Forráskód Böngészése

preliminary analysis of single-season data

George C. Privon 6 éve
szülő
commit
729f5dc163
1 módosított fájl, 123 hozzáadás és 0 törlés
  1. 123 0
      code/single_season.R

+ 123 - 0
code/single_season.R

@@ -0,0 +1,123 @@
+library(tidyverse)
+
+# use tidyverse csv reader
+season <- read_csv("data/2017-18_pbp.csv")
+
+## for later:
+## load in all data files and create a single variable
+## with the filename as an ID column
+#datafiles <- list.files("data", full.names = TRUE)
+#
+#seasons <- purrr:map_df(datafiles,
+#                        ~read_csv(.x),
+#                        .id = "filename")
+
+# construct a new ID column which is a combination of EVENTNUM and GAME_ID
+# and only retain a subset of the original columns
+season_subset <- season %>%
+    dplyr::select(GAME_ID, EVENTNUM, HOMEDESCRIPTION, VISITORDESCRIPTION,
+                  SCORE, SCOREMARGIN, PCTIMESTRING, PERIOD) %>%
+    mutate(SCOREMARGIN = as.numeric(SCOREMARGIN)) %>%
+    mutate(GAME_ID_INT = as.integer(GAME_ID))
+
+# find the home team foul entries
+homefouls <- grep("FOUL", x = season_subset$HOMEDESCRIPTION, value=FALSE)
+# and the visitor fouls (not doing pre-NA checking is faster)
+visitorfouls <- grep("FOUL", x = season_subset$VISITORDESCRIPTION, value=FALSE)
+
+# combine foul indices and get unique entries and create for only fouls
+allfouls <- season_subset[unique(c(homefouls, visitorfouls)),]
+
+# now go back and search for the game score.
+
+# find the closest previous event number with a score margin entry (can be the
+# same event number) and return the score margin
+find_score_margin <- function(gameid, eventnum, colname = "SCOREMARGIN"){
+    score_margin <- filter(season_subset,
+                           GAME_ID_INT == gameid,
+                           EVENTNUM <= eventnum,
+                           !is.na(SCOREMARGIN)) %>%
+        arrange(EVENTNUM) %>%
+        pull(colname)
+    # if no score margin found, there is no score in the game
+    # return 0 (though this actually returns NA)
+    tail_scoremargin <- ifelse(!is.null(score_margin),
+                               yes=tail(score_margin, 1),
+                               no=0)
+    return(tail_scoremargin)
+}
+
+# associate score margins with the fouls
+scoremargins <- purrr::map2_dbl(.x = allfouls$GAME_ID_INT,
+                                .y = allfouls$EVENTNUM,
+                                ~find_score_margin(gameid= .x,
+                                                   eventnum = .y,
+                                                   colname="SCOREMARGIN"))
+# associate scores with the fouls
+scores <- purrr::map2_chr(.x = allfouls$GAME_ID_INT,
+                          .y = allfouls$EVENTNUM,
+                          ~find_score_margin(gameid = .x,
+                                             eventnum = .y,
+                                             colname ="SCORE"))
+
+allfouls$SCOREMARGIN <- replace_na(scoremargins, 0)
+allfouls$SCORE <- replace_na(scores, "0-0")
+
+# corrected score margin is for consistently plotting the number of fouls
+# when either the home or visiting team is ahead
+allfouls <- mutate(allfouls,
+                   SCOREMARGIN_CORR = case_when(is.na(HOMEDESCRIPTION) ~ SCOREMARGIN,
+                                                is.na(VISITORDESCRIPTION) ~ -1*SCOREMARGIN))
+# add a total score column to the fouls data frame
+sum_score <- function(scorestr) {
+    parts <- str_split(scorestr, '-', simplify=TRUE)
+    totalscore <- as.integer(parts[1]) + as.integer(parts[2])
+}
+
+allfouls <- mutate(allfouls,
+                   TOTALSCORE = purrr::map_int(.x = allfouls$SCORE,
+                                               ~sum_score(scorestr = .x)))
+
+# add a column specifying whether the foul was on home or visitor
+allfouls <- mutate(allfouls,
+                   FOULTEAM = case_when(!is.na(HOMEDESCRIPTION) ~ "HOME",
+                                        !is.na(VISITORDESCRIPTION) ~ "VISITOR"))
+
+# save the derived "all fouls" dataframe
+write_csv(allfouls, 'data/2017-18_foulsonly.csv')
+
+## Plots
+# histogram of fouls as a function of corrected score margin
+png('figures/foul_histogram-all.png')
+ggplot(allfouls, aes(x=SCOREMARGIN_CORR)) +
+    geom_histogram(binwidth=1, fill="black") +
+    theme_bw() +
+    scale_y_log10() +
+    xlab("Score Margin") + ylab("N Fouls")
+
+dev.off()
+
+# histogram of fouls as a function of corrected score margin,
+# ignoring overtime and the final minute of regular play
+earlyfouls <- filter(allfouls,
+                     PERIOD <= 4,
+                     !(PERIOD == 4 & PCTIMESTRING < "00:01:00"))
+
+png('figures/foul_histogram-regular_nofinalmin.png')
+ggplot(earlyfouls, aes(x=SCOREMARGIN_CORR)) +
+    geom_histogram(binwidth=1, fill="red", alpha=0.5) +
+    theme_bw() +
+    scale_y_log10() +
+    xlab("Score Margin") + ylab("N Fouls") +
+    geom_histogram(data=allfouls, binwidth=1, fill="green", alpha=0.5)
+dev.off()
+
+# hexbin plots of fouls as a function of total score and corrected score
+# margin, separated by home and away teams
+png('figures/fouls_totalscore-hexbin.png', height=600, width=1200)
+ggplot(allfouls, aes(SCOREMARGIN_CORR, TOTALSCORE)) +
+    geom_hex() +
+    scale_fill_viridis_c() +
+    theme_bw() +
+    facet_wrap(vars(FOULTEAM))
+dev.off()